№ группы	Задание					
	Задание для студентов гр. 2.1 на период с 24.03.2020 – 11.04.2020 (6 часов)					
	Дисциплина «Математика»					
	Преподаватель Токарская М.С.					
	Почта для обратной связи: maya_tok@mail.ru					
	Тел. 89147174421 – WhatsApp					
2.1/1.1	1. http://lib.maupfib.kg/wp-					
	<pre>content/uploads/2015/12/Algebra_i_nachala_mat_analiz.pdf -</pre>					
	учебник «Алгебра и начала математического анализа»					
	Колмогоров А.Н.					
	2. Лекции – см.Приложение 1					
	Задания:					
	1. Переписать лекции и выучить основные определения:					
	а. Угол в 1 радиан					
	b. Формулы перевода угловых мер из градусов в радианы					
	с. Определение синуса, косинуса, тангенса и котангенса числового аргумента					
	d. Знаки функций в разных четвертях координатной плоскости					
	е. Период каждой функции					
	f. Какие из тригонометрических- функций являются					
	четными, а какие нечетными					
	g. Выписать из учебника или Интернета таблица значений					
	тригонометрических функций некоторых углов. 2. Решить номер 1, 2, 3 в учебнике					
	2. Гешить номер 1, 2, 3 в учеснике					

Приложение 1.

Лекция 1 «Основы тригонометрии. Градусная и радианная мера угла»

Тригонометрия - слово греческое и в буквальном переводе означает измерение треугольников. В данном случае измерение треугольников следует понимать, как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них.

Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других сводятся к задаче решения треугольников. Возникновение тригонометрии связано с измерениями на местности, астрономическими наблюдениями, архитектурой и строительством.

Тригонометрические функции определены в курсе математики как функции угла. В то же время разные задачи математики, физики, экономики и других наук, приводят к тригонометрическим функциям, аргументами которых есть не углы, а другие величины (длина, время, температура, и так далее). Поэтому в математике тригонометрические функции рассматривают как функции числового аргумента, которые в первую очередь используют для описания разнообразных периодических процессов.

Существуют два типа мер углов: градусная и радианная.

Углом в 1 градус называют 1/180 часть развернутого угла.

С этой мерой углов вы уже знакомы.

Радианная мера. Как известно из планиметрии, длина дуги l, радиус r и соответствующий центральный угол α связаны соотношением: $\alpha = l/r$.

Эта формула находится в основе определения радианной меры измерения углов. То есть, если l=r, значит, $\alpha=l$, и говорится, что угол α равняется одному радиану, и обозначают так: $\alpha=l$ рад.

В

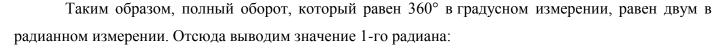
1 рад

Т.о., мы получаем определение радианной меры измерения:

Радиан - это центральный угол, у которого длина дуги и радиус имеют равные величины (AmB = AO).

Значит, радианная мера измерения угла - это отношение длины дуги, которая проведена произвольным радиусом и заключёна между сторонами этого угла, к радиусу дуги.

Из этой формулы, длину окружности C и радиус r этой окружности выражаем так: $\mathbf{2} = \mathbf{C} / \mathbf{r}$.



$$2\pi$$
 1° = −−−≈ 0.017453 рад . Обратно:

Рассмотрим примеры перехода от радианной меры к градусной и наоборот.

Пример 1. Выразите в радианах величины углов 30°; 45°; 60°; 90°.

Разделив левую и правую части равенства: $180^{\circ} = \pi$ рад последовательно на 6, 4, 3, 2, получаем: $30^{\circ} =$

$$\frac{\pi}{6}$$
 рад, $45^{\circ} = \frac{\pi}{4}$ рад, $60^{\circ} = \frac{\pi}{3}$ рад; $90^{\circ} = \frac{\pi}{2}$ рад.

Пример 2. Выразите в градусах величины углов:
$$\frac{\pi}{10}$$
 рад; $\frac{\pi}{5}$ рад; $\frac{\pi}{12}$ рад; $\frac{\pi}{18}$ рад.

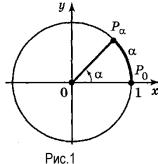
Разделив левую и правую части равенства : $180^{\circ} = \pi$ рад, последовательно на 10; 5; 12;

18, получаем:
$$\frac{\pi}{10}$$
 рад = 18°; $\frac{\pi}{5}$ рад = 36°; $\frac{\pi}{12}$ рад = 15°; $\frac{\pi}{18}$ рад = 10°.

Радианная мера угла удобна для вычисления длины дуги окружности. Так как угол в 1 радиан стягивает дугу, длина которой равняется \mathbf{R} , то угол в α радиан стягивает дугу длиной: $l = \alpha R$.

Если радиус круга равен единице, то $l = \alpha$, то есть длина дуги равна величине центрального угла, который опирается на эту дугу в радианах.

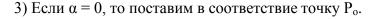
Единичная окружность.



Рассмотрим на координатной плоскости окружность радиуса 1 с центром в начале координат, которая называется единичной (рис. 1). Обозначим точку P_o - правый конец горизонтального диаметра. Поставим в соответствие каждому действительному числу α точку окружности по такому правилу:

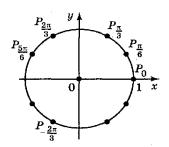
1) Если $\alpha > 0$, то, двигаясь по кругу с точки P_0 в направлении против часовой стрелки (положительное направление обхода окружности), опишем по окружности путь длиной α конечная точка этого пути и будет искомой точкой P_{α} .

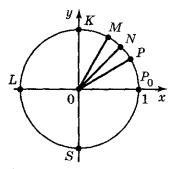
2) Если $\alpha < 0$, то, двигаясь из точки P_o (рис. 4) в направлении по часовой стрелке **(отрицательное направление),** опишем по окружности путь длиной $|\alpha|$; конец этого пути и будет искомой точкой P_α .



Таким образом, каждому вещественному числу можно поставить в соответствие точку P_0 единичной окружности.

Если $\alpha = \alpha_{\rm o} + 2\pi k$, где k -целое число, то при повороте на угол α получаем одну и ту же точку, что и при повороте на угол $\alpha_{\rm o}$.





Если точка P соответствует числу α , то она соответствует и всем числам вида α + $2\pi k$, где 2π - длина окружности (потому что радиус равен 1), а k -целое число, которое показывает количество полных обходов окружности в ту или другую сторону.

336. Записать в градусной мере углы: а) л/6; б) л/8; в) $3\pi/4$. II

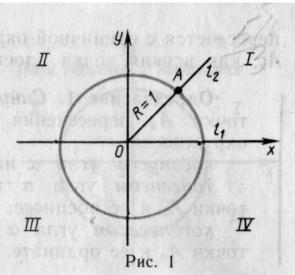
Решение. Применяя формулу (1), получим:

a)
$$\alpha = \frac{180^{\circ}(\pi/6)}{\pi} = \frac{180^{\circ}}{6} = 30^{\circ};$$

6)
$$\alpha = \frac{180^{\circ}(\pi/8)}{\pi} = \frac{180^{\circ}}{8} = 22^{\circ}30';$$

B)
$$\alpha = \frac{180^{\circ}(3\pi/4)}{\pi} = \frac{180^{\circ} \cdot 3\pi}{\pi \cdot 4} = 135^{\circ}.$$

337. Записать в радианной мере углы: а) 30°; б) 45°; в) 315°; г) 540°.



Решение. Используя формулу (2), находим:

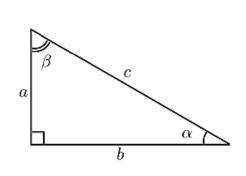
a)
$$\alpha = \frac{\pi \cdot 30^{\circ}}{180^{\circ}} = \frac{\pi}{6}$$
; 6) $\alpha = \frac{\pi \cdot 45^{\circ}}{180^{\circ}} = \frac{\pi}{4}$;

B)
$$\alpha = \frac{\pi \cdot 315^{\circ}}{180^{\circ}} = \frac{\pi \cdot 7}{4} = \frac{7\pi}{4}$$
; Γ) $\alpha = \frac{\pi \cdot 540^{\circ}}{180^{\circ}} = 3\pi$.

Приложение 2.

Лекция 2. Тригонометрические функции числового и углового аргумента: определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса



$\sin \alpha = \frac{a}{c}$
$\cos\alpha = \frac{b}{c}$
$\operatorname{tg}\alpha=\frac{a}{b}$
ct g $\alpha=\frac{b}{a}$

и котангенса острого угла в прямоугольном треугольнике.

Определение.						
Синус		острого	угла	В		
прямоугольном треугольнике –						
отношение противолежащего			катета	К		
гипотенузе.						
0						

Определение.

Косинус острого угла в прямоугольном треугольнике — это отношение прилежащего катета к гипотенузе.

Определение.

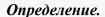
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.

В тригонометрии на угол начинают смотреть более широко - вводят понятие <u>угла поворота</u>. Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от $-\infty$ до $+\infty$.

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A_1 , в которую переходит так называемая начальная точка $A(1,\ \theta)$ после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности.



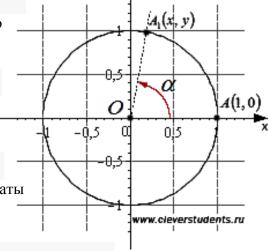
Синус угла поворота α - это ордината точки A_I , то есть, $sin\alpha = y$.

Определение.

Косинусом угла поворота α называют абсциссу точки A_I , то есть, $cos\alpha = x$.

Определение.

Тангенс угла поворота α - это отношение ординаты точки A_I к ее абсциссе, то есть, $tga = \frac{y}{x}$.



Определение.

Котангенсом угла поворота α называют отношение абсциссы точки A_I к ее ординате, то есть, $ctga = \frac{x}{v}$

Дальше возникает потребность отвязаться от углов и дать определения синуса, косинуса, тангенса и котангенса числа, а не угла.

Определение.

<u>Синусом, косинусом, тангенсом и котангенсом числа t называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t радианов соответственно.</u>

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t. Допустим, что числу t соответствует точка окружности $A_I(x, y)$ (например, числу $\frac{\pi}{2}$ отвечает точка $A_I(0, I)$).

Определение.

Синусом числа t называют ординату точки единичной окружности, соответствующей числу t, то есть, sint=y.

Определение.

Косинусом числа t называют абсциссу точки единичной окружности, отвечающей числу t, то есть, cost = x.

Определение.

Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t, то есть, tgt=y/x. В другой равносильной формулировке тангенс числа t – это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost.

Определение.

Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t, то есть, ctgt = x/y. Другая формулировка такова: тангенс числа t – это отношение косинуса числа t к синусу числа t: ctgt = cost/sint.

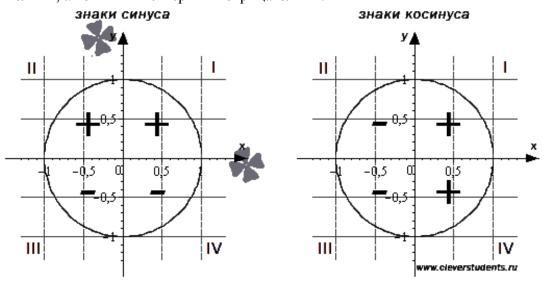
Знаки синуса, косинуса, тангенса и котангенса по четвертям

Давайте разберемся, какие знаки имеют значения синуса, косинуса, тангенса и котангенса угла поворота α в зависимости от того, углом какой четверти является α .

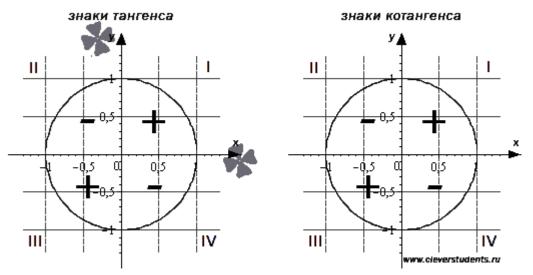
Для синуса и косинуса это сделать просто.

По определению синус угла α - это ордината точки A_I . Очевидно, что в I и II координатных четвертях она положительна, а в III и IV четвертях — отрицательна. Таким образом, синус угла α имеет знак плюс в I и II четвертях, а знак минус — в III и VI четвертях.

В свою очередь косинус угла α - это абсцисса точки A_I . В I и IV четвертях она положительна, а во II и III четвертях — отрицательна. Следовательно, значения косинуса угла α в I и IV четвертях положительны, а во II и III четвертях — отрицательны.



Чтобы определить знаки по четвертям тангенса и котангенса нужно вспомнить их определения: тангенс — это отношение ординаты точки A_I к абсциссе, а котангенс — отношение абсциссы точки A_I к ординате. Тогда из *правил деления чисел* с одинаковыми и разными знаками следует, что тангенс и котангенс имеют знак плюс, когда знаки абсциссы и ординаты точки A_I одинаковые, и имеют знак минус — когда знаки абсциссы и ординаты точки A_I различны. Следовательно, тангенс и котангенс угла имеют знак + в I и III координатных четвертях, и знак минус — во II и IV четвертях.



Переходим к следующему свойству синуса, косинуса, тангенса и котангенса.

Свойство периодичности

Сейчас мы разберем, пожалуй, самое очевидное свойство синуса, косинуса, тангенса и котангенса угла. Оно состоит в следующем: при изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса этого угла не изменяются.

Это и понятно: при изменении угла на целое число оборотов мы из начальной точки A всегда будем попадать в точку A_I на единичной окружности, следовательно, значения синуса, косинуса, тангенса и котангенса остаются неизменными, так как неизменны координаты точки A_I .

С помощью формул рассматриваемое свойство синуса, косинуса, тангенса и котангенса можно записать так:

$$sin(\alpha+2\cdot\pi\cdot n)=sin\alpha$$
,
 $cos(\alpha+2\cdot\pi\cdot n)=cos\alpha$,
 $tg(\alpha+2\cdot\pi\cdot n)=tg\alpha$,
 $ctg(\alpha+2\cdot\pi\cdot n)=ctg\alpha$,

где α - угол поворота в радианах, **n**— **любое <u>целое</u> число**, абсолютная величина которого указывает количество полных оборотов, на которые изменяется угол α , а знак числа z указывает направление поворота.

Если же угол поворота α задан в градусах, то указанные формулы перепишутся в виде $sin(\alpha+360^{\circ}\cdot z)=sin\alpha$, $cos(\alpha+360^{\circ}\cdot z)=cos\alpha$, $tg(\alpha+360^{\circ}\cdot z)=tg\alpha$, $ctg(\alpha+360^{\circ}\cdot z)=ctg\alpha$.

Приведем примеры использования этого свойства.

Например,

$$\sin \frac{13\pi}{5} = \sin \frac{3\pi}{5}, \quad \frac{13\pi}{5} = \frac{3\pi}{5} + 2\pi, \quad \sin \left(\frac{3\pi}{5} + 2\pi\right) = \sin \frac{3\pi}{5}.$$

$$tg(-689^{\circ}) = tg(31^{\circ} + 360^{\circ} \cdot (-2)) = tg31^{\circ}$$

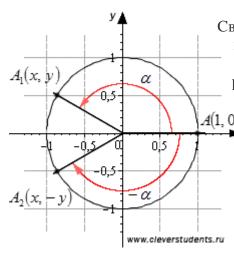
$$tg(-689^{\circ}) = tg(-329^{\circ} + 360^{\circ} \cdot (-1)) = tg(-329^{\circ})$$

Это свойство вместе с формулами приведения очень часто используется при вычислении значений синуса, косинуса, тангенса и котангенса «больших» углов.

Рассмотренное свойство синуса, косинуса, тангенса и котангенса иногда называют свойством периодичности.

Свойства синусов, косинусов, тангенсов и котангенсов противоположных углов

Пусть A_1 — точка, полученная в результате поворота начальной точки A(1, 0) вокруг точки O на угол α , а точка A_2 — это результат поворота точки A на угол A, противоположный углу α .



Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов базируется на достаточно очевидном факте: упомянутые выше точки A_1 и A_2 либо совпадают, либо располагаются симметрично относительно оси Ox. То есть, если точка A_1 имеет координаты (x, y), то точка A_2 будет иметь координаты (x, -y). Отсюда по определениям синуса, косинуса, тангенса и котангенса записываем равенства

$$\sin \alpha = y$$
, $\cos \alpha = x$, $tg\alpha = \frac{y}{x}$, $ctg\alpha = \frac{x}{y}$

Сопоставляя их, приходим к соотношениям между синусами, косинусами, тангенсами и котангенсами противоположных углов α и $-\alpha$ вида:

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$tg(-\alpha) = -tg\alpha$$

$$ctg(-\alpha) = -ctg\alpha$$

Это и есть рассматриваемое свойство в виде формул.

Приведем примеры использования этого свойства. Например, справедливы

$$\sin\left(-34^{\circ}\right) = -\sin 34^{\circ}, \quad ctg \frac{\pi}{7} = -ctg\left(-\frac{\pi}{7}\right)_{\text{M}} \cos\left(-10^{\circ}\right) = \cos 10^{\circ}.$$

Остается лишь заметить, что свойство синусов, косинусов, тангенсов и котангенсов противоположных углов, как и предыдущее свойство, часто используется при вычислении значений синуса, косинуса, тангенса и котангенса, и позволяет полностью уйти от отрицательных углов.